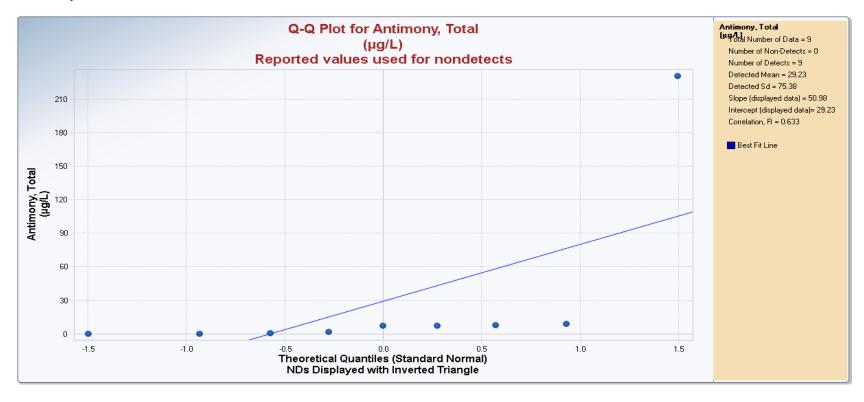


B Groundwater BTV ProUCL Input and Output


ProUCL Input Table - Complete

Well	Antimony, Dissolved (μg/L)	D_Antimony, Dissolved (μg/L)	Antimony, Total (μg/L)	D_Antimony, Total (μg/L)	Arsenic, Dissolved (µg/L)	D_Arsenic, Dissolved (μg/L)	Arsenic, Total (μg/L)	D_Arsenic, Total (μg/L)	Mercury, Dissolved (ng/L)	D_Mercury, Dissolved (ng/L)	Mercury, Total (1631) (ng/L)	D_Mercury, Total (1631) (ng/L)		D_Mercury, Total (7470) (µg/L)	Log_Antimony, Total (μg/L)	D_Log_Antimony, Total (μg/L)	Log_Arsenic, Total (µg/L)	D_Log_Arseni c, Total (μg/L)	Log_Mercury, Dissolved (ng/L)	D_Log_M ercury, Dissolved (ng/L)	Log_Mercury, Total (1631)	D_Log_M ercury, Total (1631) (ng/L)
MW29	1.568499982	1	1.50687501	1	25.55000019	1	59.73750019	1	4.4731251	1	80.67500001	1	0.0989	1	0.17807723	1	1.776247045	1	0.650611044	1	1.906738974	1
MW31	0.027000001	1	0.50466666	1	0.050000001	0	1.759999974	1	3.095	1	103.3141669	1	0.1402	1	-0.296995384	1	0.245512661	1	0.490660654	1	2.014159878	1
MW40			7.44999993	1			146.25	1	0.66749999	1	79.67499995	1	0.073125	1	0.872156269	1	2.165095875	1	-0.175548734	1	1.901322072	1
MW42			230	1			440	1	67.7200001	1	681.2000003	1	0.263875	1	2.361727836	1	2.643452676	1	1.83071695	1	2.833274639	1
MW43			7.0999999	1			194.5	1	2.60750005	1	17.82625037	1	0.069	1	0.851258343	1	2.288919606	1	0.416224325	1	1.251060002	1
MW50			7.30000019	1			490	1	14.8000002	1	1130	1	0.56999999	1	0.863322871	1	2.69019608	1	1.170261721	1	3.053078443	1
MW56			0.13	1			2.299999952	1	0.34999999	0	13.14999962	0	0.15000001	0	-0.886056664	1	0.361727827	1	-0.455931963	0	1.11892574	0
MW57			0.15000001	1			2.5	1	13.6000004	1	119	1	0.15000001	0	-0.823908724	1	0.397940009	1	1.133538921	1	2.075546961	1
MW59			8.89999962	1			78	1	3.71499991	0	312	1	0.15000001	0	0.949389988	1	1.892094603	1	0.569958808	0	2.494154594	1

ProUCL Input Table - Trimmed

Well	Antimony, Dissolved (μg/L)	D_Antimony, Dissolved (μg/L)	Antimony, Total (µg/L)	D_Antimony, Total (μg/L)	Arsenic, Dissolved (μg/L)	D_Arsenic, Dissolved (μg/L)	Arsenic, Total (μg/L)	D_Arsenic, Total (μg/L)	Mercury, Dissolved (ng/L)	D_Mercury, Dissolved (ng/L)	Mercury, Total (1631) (ng/L)	D_Mercury, Total (1631) (ng/L)	-	D_Mercury, Total (7470) (μg/L)	Log_Antimony, Total (μg/L)	D_Log_Antimony, Total (μg/L)	Log_Arsenic, Total (μg/L)	D_Log_Arseni c, Total (μg/L)	Log_Mercury, Dissolved (ng/L)	D_Log_M ercury, Dissolved (ng/L)	Log_Mercury, Total (1631) (ng/L)	D_Log_M ercury, Total (1631) (ng/L)
MW29	1.568499982	1	1.50687501	1	25.55000019	1	59.73750019	1	4.4731251	1	80.67500001	1	0.0989	1	0.17807723	1	1.776247045	1	0.650611044	1	1.906738974	1
MW31	0.027000001	1	0.50466666	1	0.050000001	0	1.759999974	1	3.095	1	103.3141669	1	0.1402	1	-0.296995384	1	0.245512661	1	0.490660654	1	2.014159878	1
MW40			7.44999993	1			146.25	1	0.66749999	1	79.67499995	1	0.073125	1	0.872156269	1	2.165095875	1	-0.175548734	1	1.901322072	1
MW42			(trimmed)	1			440	1	(trimmed)	1	681.2000003	1	0.263875	1	(trimmed)	1	2.643452676	1	(trimmed)	1	2.833274639	1
MW43			7.0999999	1			194.5	1	2.60750005	1	17.82625037	1	0.069	1	0.851258343	1	2.288919606	1	0.416224325	1	1.251060002	1
MW50			7.30000019	1			490	1	14.8000002	1	1130	1	0.56999999	1	0.863322871	1	2.69019608	1	1.170261721	1	3.053078443	1
MW56			0.13	1			2.299999952	1	0.34999999	0	13.14999962	0	0.15000001	0	-0.886056664	1	0.361727827	1	-0.455931963	0	1.11892574	0
MW57			0.15000001	1			2.5	1	13.6000004	1	119	1	0.15000001	0	-0.823908724	1	0.397940009	1	1.133538921	1	2.075546961	1
MW59			8.89999962	1			78	1	3.71499991	0	312	1	0.15000001	0	0.949389988	1	1.892094603	1	0.569958808	0	2.494154594	1

Antimony

Outlier Tests for Selected Variables replacing nondetects with 1/2 the Detection Limit

User Selected Options

Date/Time of Computation ProUCL 5.16/2/2018 4:09:52 PM

From File BTVs for GW from Minerlized Areas near RDM 06022018 a.xls

Full Precision OFF

Dixon's Outlier Test for Antimony, Total

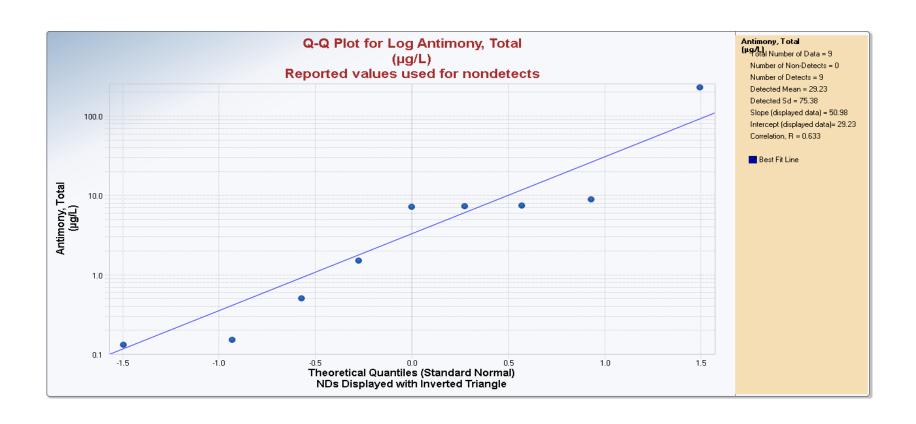
 $(\mu g/L)$

Total N = 9 Number NDs = 0 Number Detects = 9 Number Data (n) = 9 10% critical value: 0.441 5% critical value: 0.512

1% critical value: 0.635

Note: NDs replaced by DL/2 in Outlier Test

1. Data Value 230 is a Potential Outlier (Upper Tail)?


Test Statistic: 0.962

For 10% significance level, 230 is an outlier. For 5% significance level, 230 is an outlier. For 1% significance level, 230 is an outlier.

2. Data Value 0.129999995231628 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.002

For 10% significance level, 0.129999995231628 is not an outlier. For 5% significance level, 0.129999995231628 is not an outlier. For 1% significance level, 0.129999995231628 is not an outlier.

Dixon's Outlier Test for Log_Antimony, Total

 $(\mu g/L)$

Total N = 9 Number NDs = 0 Number Detects = 9 Number Data (n) = 9 10% critical value: 0.441

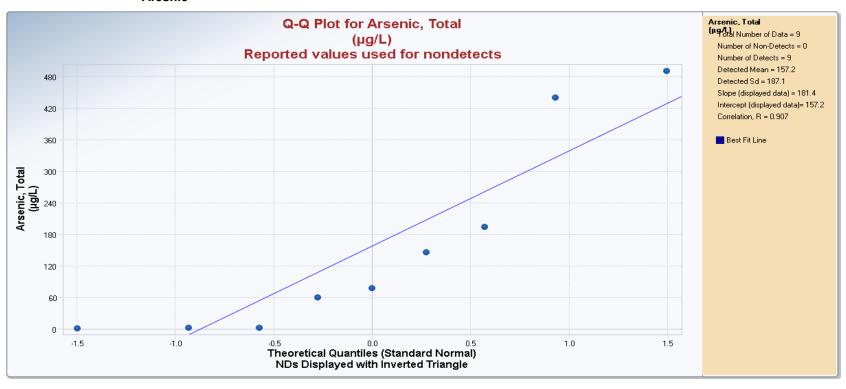
5% critical value: 0.512 1% critical value: 0.635

Note: NDs replaced by DL/2 in Outlier Test

1. Data Value 2.36172783601759 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.443

For 10% significance level, 2.36172783601759 is an outlier.


For 5% significance level, 2.36172783601759 is not an outlier. For 1% significance level, 2.36172783601759 is not an outlier.

2. Data Value -0.886056663622992 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.034

For 10% significance level, -0.886056663622992 is not an outlier. For 5% significance level, -0.886056663622992 is not an outlier. For 1% significance level, -0.886056663622992 is not an outlier.

Arsenic

Outlier Tests for Selected Variables replacing nondetects with 1/2 the Detection Limit

User Selected Options

Date/Time of Computation ProUCL 5.16/2/2018 4:18:13 PM

From File BTVs for GW from Minerlized Areas near RDM 06022018

Full Precision OFF

Dixon's Outlier Test for Arsenic, Total

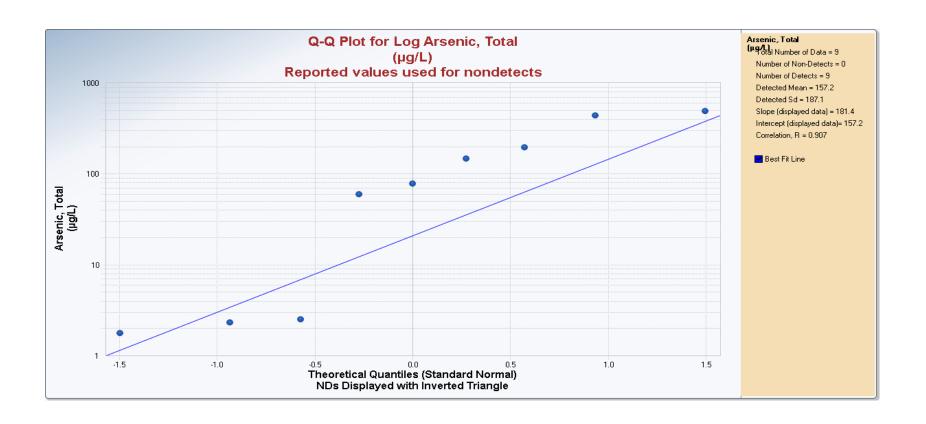
 $(\mu g/L)$

Total N = 9 Number NDs = 0 Number Detects = 9 Number Data (n) = 9 10% critical value: 0.441 5% critical value: 0.512

1% critical value: 0.635

Note: NDs replaced by DL/2 in Outlier Test

1. Data Value 490 is a Potential Outlier (Upper Tail)?


Test Statistic: 0.103

For 10% significance level, 490 is not an outlier. For 5% significance level, 490 is not an outlier. For 1% significance level, 490 is not an outlier.

2. Data Value 1.75999997369945 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.001

For 10% significance level, 1.75999997369945 is not an outlier. For 5% significance level, 1.75999997369945 is not an outlier. For 1% significance level, 1.75999997369945 is not an outlier.

Dixon's Outlier Test for Log_Arsenic, Total

 $(\mu g/L)$

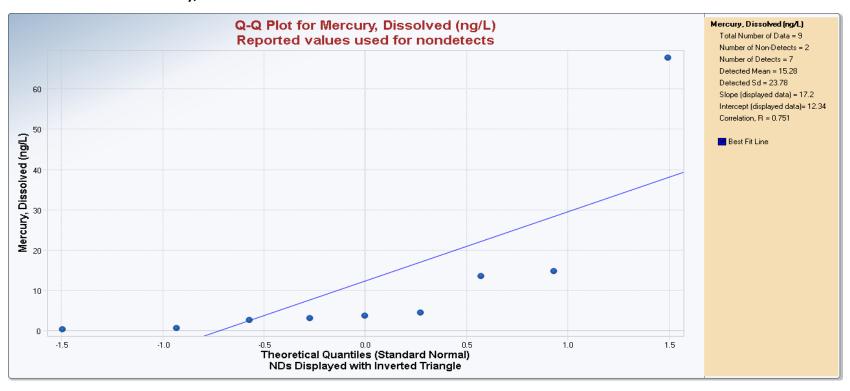
Total N = 9 Number NDs = 0 Number Detects = 9 Number Data (n) = 9 10% critical value: 0.441

5% critical value: 0.512 1% critical value: 0.635

Note: NDs replaced by DL/2 in Outlier Test

1. Data Value 2.69019608002851 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.020


For 10% significance level, 2.69019608002851 is not an outlier. For 5% significance level, 2.69019608002851 is not an outlier. For 1% significance level, 2.69019608002851 is not an outlier.

2. Data Value 0.245512661324273 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.048

For 10% significance level, 0.245512661324273 is not an outlier. For 5% significance level, 0.245512661324273 is not an outlier. For 1% significance level, 0.245512661324273 is not an outlier.

Mercury, Dissolved

Outlier Tests for Selected Variables replacing nondetects with 1/2 the Detection Limit

User Selected Options

Date/Time of Computation ProUCL 5.16/2/2018 4:26:31 PM

From File BTVs for GW from Minerlized Areas near RDM 06022018

Full Precision OFF

Dixon's Outlier Test for Mercury, Dissolved (ng/L)

Total N = 9

Number NDs = 2

Number Detects = 7

Number Data (n) = 9

10% critical value: 0.441

5% critical value: 0.512 1% critical value: 0.635

Note: NDs replaced by DL/2 in Outlier Test

1. Data Value 67.7200000882149 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.789

For 10% significance level, 67.7200000882149 is an outlier. For 5% significance level, 67.7200000882149 is an outlier. For 1% significance level, 67.7200000882149 is an outlier.

2. Data Value 0.174999997019768 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.034

For 10% significance level, 0.174999997019768 is not an outlier. For 5% significance level, 0.174999997019768 is not an outlier. For 1% significance level, 0.174999997019768 is not an outlier.

Dixon's Outlier Test for Log_Mercury, Dissolved (ng/L)

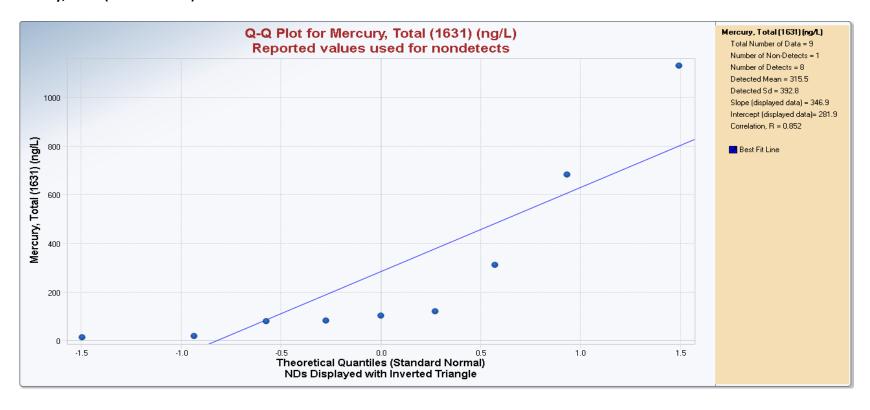
Total N = 9 Number NDs = 2 Number Detects = 7 Number Data (n) = 9 10% critical value: 0.441 5% critical value: 0.512

1% critical value: 0.635

Note: NDs replaced by DL/2 in Outlier Test

1. Data Value 1.83071695000263 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.329


For 10% significance level, 1.83071695000263 is not an outlier. For 5% significance level, 1.83071695000263 is not an outlier. For 1% significance level, 1.83071695000263 is not an outlier.

2. Data Value -0.227965981522857 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.037

For 10% significance level, -0.227965981522857 is not an outlier. For 5% significance level, -0.227965981522857 is not an outlier. For 1% significance level, -0.227965981522857 is not an outlier.

Mercury, Total (Method 1631)

Outlier Tests for Selected Variables replacing nondetects with 1/2 the Detection Limit

User Selected Options

Date/Time of Computation ProUCL 5.16/2/2018 4:33:27 PM

From File BTVs for GW from Minerlized Areas near RDM 06022018

Full Precision OFF

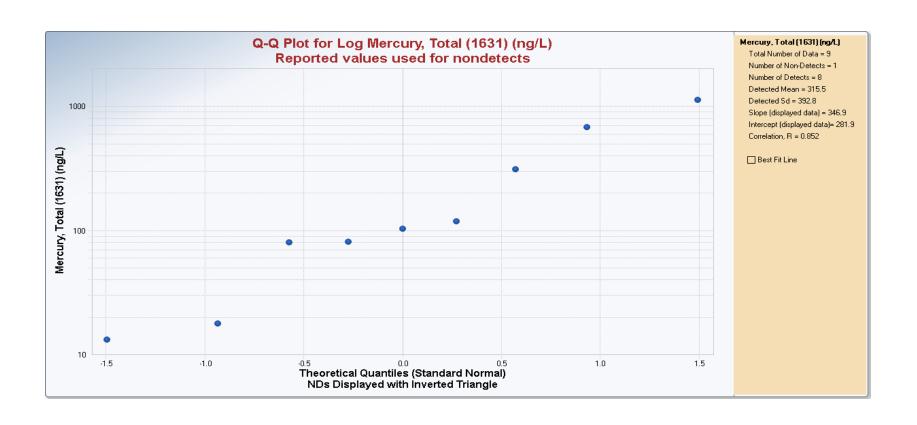
Dixon's Outlier Test for Mercury, Total (1631) (ng/L)

Total N = 9 Number NDs = 1 Number Detects = 8 Number Data (n) = 9 10% critical value: 0.441 5% critical value: 0.512

1% critical value: 0.635

Note: NDs replaced by DL/2 in Outlier Test

1. Data Value 1130 is a Potential Outlier (Upper Tail)?


Test Statistic: 0.404

For 10% significance level, 1130 is not an outlier. For 5% significance level, 1130 is not an outlier. For 1% significance level, 1130 is not an outlier.

2. Data Value 6.57499980926515 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.017

For 10% significance level, 6.57499980926515 is not an outlier. For 5% significance level, 6.57499980926515 is not an outlier. For 1% significance level, 6.57499980926515 is not an outlier.

Dixon's Outlier Test for Log_Mercury, Total (1631) (ng/L)

Total N = 9 Number NDs = 1 Number Detects = 8 Number Data (n) = 9 10% critical value: 0.441 5% critical value: 0.512

1% critical value: 0.635

Note: NDs replaced by DL/2 in Outlier Test

1. Data Value 3.05307844348342 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.122

For 10% significance level, 3.05307844348342 is not an outlier. For 5% significance level, 3.05307844348342 is not an outlier. For 1% significance level, 3.05307844348342 is not an outlier.

2. Data Value 0.559462870113642 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.304

For 10% significance level, 0.559462870113642 is not an outlier. For 5% significance level, 0.559462870113642 is not an outlier. For 1% significance level, 0.559462870113642 is not an outlier.

ProUCL Output - Complete Dataset

Background Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.16/2/2018 4:43:36 PM

From File BTVs for GW from Minerlized Areas near RDM 06022018 a.xls

Full Precision OFF

Confidence Coefficient 95%
Coverage 95%
Different or Future K Observations 1
Number of Bootstrap Operations 2000

Antimony, Dissolved (µg/L)

General Statistics

Total Number of Observations	2 Number of Distinct Observations	2
Minimum	0.027 First Quartile	0.412
Second Largest	0.027 Median	0.798
Maximum	1.568 Third Quartile	1.183
Mean	0.798 SD	1.09
Coefficient of Variation	1.366 Skewness	N/A

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Antimony, Dissolved (µg/L) was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Antimony, Total

(μg/L)

Total Number of Observations	9 Number of Distinct Observations 9
Minimum 0.1	3 First Quartile 0.505
Second Largest 8.	9 Median 7.1
Maximum 23	0 Third Quartile 7.45
Mean 29.2	3 SD 75.38
Coefficient of Variation 2.57	9 Skewness 2.987
Mean of logged Data 1.04	1 SD of logged Data 2.367

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL)	3.031 d2max (for USL)	2.11
------------------------------	-----------------------	------

Normal GOF Test

Shapiro Wilk Test Statistic 0.432 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.829 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.495 Lilliefors GOF Test

5% Lilliefors Critical Value 0.274 Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Background Statistics Assuming Normal Distribution

95% UTL with 95% Coverage	257.7 90% Percentile (z)	125.8
95% UPL (t)	177 95% Percentile (z)	153.2
95% USL	188.2 99% Percentile (z)	204.6

Gamma GOF Test		
A-D Test Statistic	0.911 Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.809 Data Not Gamma Distributed at 5% Significance Leve	اد
K-S Test Statistic	0.354 Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.302 Data Not Gamma Distributed at 5% Significance Leve	اد
Data Not Gamma Distributed at 5% Significance Level	0.302 Bata Not Gamma Bistributed at 370 Significance Leve	-1
Data Not Gamma Distributed at 5% Significance Level		
Gamma Statistics		
k hat (MLE)	0.296 k star (bias corrected MLE)	0.271
Theta hat (MLE)	98.72 Theta star (bias corrected MLE)	107.7
nu hat (MLE)	5.329 nu star (bias corrected)	4.886
MLE Mean (bias corrected)	29.23 MLE Sd (bias corrected)	56.1
Background Statistics Assuming Gamma Distribution		
95% Wilson Hilferty (WH) Approx. Gamma UPL	144.5 90% Percentile	87.13
95% Hawkins Wixley (HW) Approx. Gamma UPL	147.6 95% Percentile	138
95% WH Approx. Gamma UTL with 95% Coverage	355.4 99% Percentile	271.8
95% HW Approx. Gamma UTL with 95% Coverage	431.2	
95% WH USL	166.7 95% HW USL	174.6
Lognormal GOF Test		
Shapiro Wilk Test Statistic	0.916 Shapiro Wilk Lognormal GOF Test	
·		
5% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.829 Data appear Lognormal at 5% Significance Level	
	0.207 Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.274 Data appear Lognormal at 5% Significance Level	
Data appear Lognormal at 5% Significance Level		
Background Statistics assuming Lognormal Distribution		
95% UTL with 95% Coverage	3698 90% Percentile (z)	58.82
95% UPL (t)	293.1 95% Percentile (z)	139
95% USL	417.5 99% Percentile (z)	697.5
Nonparametric Distribution Free Background Statistics		
Data appear Lognormal at 5% Significance Level		
Nonparametric Upper Limits for Background Threshold Value		
Order of Statistic, r	9 95% UTL with 95% Coverage	230
Approx, f used to compute achieved CC	0.474 Approximate Actual Confidence Coefficient achieved	d by U 0.37
pp - ,	Approximate Sample Size needed to achieve specifie	•
95% Percentile Bootstrap UTL with 95% Coverage	230 95% BCA Bootstrap UTL with 95% Coverage	230
95% UPL	230 90% Percentile	53.12
90% Chebyshev UPL	267.6 95% Percentile	141.6
95% Chebyshev UPL	375.6 99% Percentile	212.3
95% USL	230	
		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Arsenic, Dissolved (µg/L)

General	Statistics
OCHCI ai	Julianica

Total Number of Observations	2 Numbe	er of Missing Observations	0
Number of Distinct Observations	2		
Number of Detects	1 Numbe	er of Non-Detects	1
Number of Distinct Detects	1 Numbe	er of Distinct Non-Detects	1
Minimum Detect	25.55 Minimi	um Non-Detect	0.05
Maximum Detect	25.55 Maxim	um Non-Detect	0.05
Variance Detected	N/A Percen	t Non-Detects	50%
Mean Detected	25.55 SD Det	ected	N/A
Mean of Detected Logged Data	3.241 SD of D	Detected Logged Data	N/A

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Arsenic, Dissolved (µg/L) was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Arsenic, Total

 $(\mu g/L)$

General S	tatistics
-----------	-----------

Total Number of Observations	9 Number of Distinct Observations	9
Minimum	1.76 First Quartile	2.5
Second Largest	440 Median	78
Maximum	490 Third Quartile	194.5
Mean	157.2 SD	187.1
Coefficient of Variation	1.19 Skewness	1.151
Mean of logged Data	3.7 SD of logged Data	2.303

Critical Values for Background	Threshold Values	(BTVs)
--------------------------------	------------------	--------

Tolerance Factor K (For UTL)	3.031 d2max (for USL)	2.11
------------------------------	-----------------------	------

Normal GOF Test

Shapiro Wilk Test Statistic 0.808 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.829 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.22 Lilliefors GOF Test

5% Lilliefors Critical Value 0.274 Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Background Statistics Assuming Normal Distribution

95% UTL with 95% Coverage	724.4 90% Percentile (z)	397
95% UPL (t)	524 95% Percentile (z)	465
95% USL	552 99% Percentile (z)	592.5

Gamma GOF Test

A-D Test Statistic 0.448 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.776 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.221 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.295 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics			
k hat (MLE)	0.472	k star (bias corrected MLE)	0.389
Theta hat (MLE)	333.1	Theta star (bias corrected MLE)	404.5
nu hat (MLE)	8.496	nu star (bias corrected)	6.997
MLE Mean (bias corrected)	157.2	MLE Sd (bias corrected)	252.2
Background Statistics Assuming Gamma Distribution			
95% Wilson Hilferty (WH) Approx. Gamma UPL		90% Percentile	446.3
95% Hawkins Wixley (HW) Approx. Gamma UPL	997.1	95% Percentile	659.7
95% WH Approx. Gamma UTL with 95% Coverage	1807	99% Percentile	1198
95% HW Approx. Gamma UTL with 95% Coverage	2567		
95% WH USL	936	95% HW USL	1154
Lognormal GOF Test			
Shapiro Wilk Test Statistic	U 839	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value		Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value		Data appear Lognormal at 5% Significance Level	
Data appear Lognormal at 5% Significance Level	0.27	Sata appear Eognomia at 370 significance Level	
Background Statistics assuming Lognormal Distribution			
95% UTL with 95% Coverage	43433	90% Percentile (z)	773.3
95% UPL (t)	3689	95% Percentile (z)	1785
95% USL	5204	99% Percentile (z)	8574
No construct to Pint the Unit Free Peril and the Unit time			
Nonparametric Distribution Free Background Statistics			
Data appear Approximate Normal at 5% Significance Level			
Nonparametric Upper Limits for Background Threshold Values			
Order of Statistic, r	9	95% UTL with 95% Coverage	490
Approx, f used to compute achieved CC	0.474	Approximate Actual Confidence Coefficient achieved by U	0.37
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	490	95% BCA Bootstrap UTL with 95% Coverage	490
95% UPL	490	90% Percentile	450
90% Chebyshev UPL	748.9	95% Percentile	470
95% Chebyshev UPL	1017	99% Percentile	486
95% USL	490		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Mercury, Dissolved (ng/L)

General Statistics			
Total Number of Observations	9	Number of Missing Observations	0
Number of Distinct Observations	9		
Number of Detects	7	Number of Non-Detects	2
Number of Distinct Detects	7	Number of Distinct Non-Detects	2
Minimum Detect	0.667	Minimum Non-Detect	0.35
Maximum Detect	67.72	Maximum Non-Detect	3.715
Variance Detected	565.4	Percent Non-Detects	22.22%
Mean Detected	15.28	SD Detected	23.78
Mean of Detected Logged Data	1.815	SD of Detected Logged Data	1.494
Critical Values for Background Threshold Values (BTVs)		
Tolerance Factor K (For UTL)	3.031	d2max (for USL)	2.11
Normal GOF Test on Detects Only			
Shapiro Wilk Test Statistic	0.65	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.803	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.365	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.304	Data Not Normal at 5% Significance Level	
Data Not Normal at 5% Significance Level			
Kaplan Meier (KM) Background Statistics Assuming No	ormal Distributi	on	
KM Mean	12.11	KM SD	20.31
95% UTL95% Coverage	73.66	95% KM UPL (t)	51.91
90% KM Percentile (z)	38.13	95% KM Percentile (z)	45.51
99% KM Percentile (z)	59.35	95% KM USL	54.95
DL/2 Substitution Background Statistics Assuming Nor	mal Distributio	n	
Mean	12.11	SD	21.54
95% UTL95% Coverage	77.39	95% UPL (t)	54.32
90% Percentile (z)	39.71	95% Percentile (z)	47.53
99% Percentile (z)	62.21	95% USL	57.54
DL/2 is not a recommended method. DL/2 provided fo	or comparisons	and historical reasons	
Gamma GOF Tests on Detected Observations Only			
A-D Test Statistic	0.4	Anderson-Darling GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 59	% Significance Level
K-S Test Statistic		Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.324	Detected data appear Gamma Distributed at 59	% Significance Level
Detected data appear Gamma Distributed at 5% Sign	ificance Level		
Gamma Statistics on Detected Data Only			
k hat (MLE)	0.667	k star (bias corrected MLE)	0.476
Theta hat (MLE)	22.9	Theta star (bias corrected MLE)	32.07
nu hat (MLE)	9.34	nu star (bias corrected)	6.671
MLE Mean (bias corrected)	15.28		
MLE Sd (bias corrected)	22.14	95% Percentile of Chisquare (2kstar)	3.724

Gamma ROS Statistics using Imputed Non-Detec		and the second second		
GROS may not be used when data set has > 50%			>	
		as <1.0, especially when the sample size is small (e.g., <1	o-20)	
For such situations, GROS method may yield inc		es of UCLs and BTVs		
This is especially true when the sample size is sn				
-	UCLs may	be computed using gamma distribution on KM estimates		44.00
Minimum		0.01 Mean		11.89
Maximum		67.72 Median		3.095
SD		21.67 CV		1.823
k hat (MLE)		0.326 k star (bias corrected MLE)		0.291
Theta hat (MLE)		36.47 Theta star (bias corrected MLE)		40.8
nu hat (MLE)		5.866 nu star (bias corrected)		5.244
MLE Mean (bias corrected)		11.89 MLE Sd (bias corrected)		22.02
95% Percentile of Chisquare (2kstar)		2.691 90% Percentile		35.18
95% Percentile	DOC C4	54.89 99% Percentile		106.3
The following statistics are computed using Gam		·		
Upper Limits using Wilson Hilferty (WH) and Hav			\A/I I	1.1547
OFO/ Approx Commo LITI with OFO/ Coverage	WH	HW 210.0 050/ Approx. Commo LIDI	WH CF 21	HW
95% Approx. Gamma UTL with 95% Coverage	151.5	219.9 95% Approx. Gamma UPL	65.21	78.3
95% Gamma USL	74.47	91.99		
Estimates of Common Demonstration with Esti				
Estimates of Gamma Parameters using KM Esti	mates	12.11 50 (VM)		20.21
Mean (KM)		12.11 SD (KM)		20.31 7.313
Variance (KM)		412.4 SE of Mean (KM)		0.311
k hat (KM)		0.356 k star (KM)		5.601
nu hat (KM)		6.402 nu star (KM)		
theta hat (KM)		34.05 theta star (KM)		38.92
80% gamma percentile (KM)		18.73 90% gamma percentile (KM)		35.56
95% gamma percentile (KM)		54.75 99% gamma percentile (KM)		104.4
The following statistics are computed using gam	ıma distrihi	ition and KM estimates		
Upper Limits using Wilson Hilferty (WH) and Hav				
opper Limits using wilson fillerty (will, and has	WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	110.9	132 95% Approx. Gamma UPL	52.23	55.02
95% KM Gamma Percentile	40.15	40.81 95% Gamma USL	58.72	62.93
3370 KW Guillia i crecitale	40.13	40.01 33% dumma 03E	30.72	02.33
Lognormal GOF Test on Detected Observations	Only			
Shapiro Wilk Test Statistic	Omy.	0.974 Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value		0.803 Detected Data appear Lognormal at 5% Signifi	cance Level	
Lilliefors Test Statistic		0.155 Lilliefors GOF Test	20	
5% Lilliefors Critical Value		0.304 Detected Data appear Lognormal at 5% Signifi	cance Level	
Detected Data appear Lognormal at 5% Significa	ince Level	0.00 . 2000000 2000 appear 208.10.1110 at 0/0 0.8.111	20	
Background Lognormal ROS Statistics Assuming	Lognormal	Distribution Using Imputed Non-Detects		
Mean in Original Scale		12.03 Mean in Log Scale		1.234
SD in Original Scale		21.58 SD in Log Scale		1.788
95% UTL95% Coverage		774.3 95% BCA UTL95% Coverage		67.72
95% Bootstrap (%) UTL95% Coverage		67.72 95% UPL (t)		114.2
90% Percentile (z)		33.94 95% Percentile (z)		64.98
99% Percentile (z)		219.7 95% USL		149.1
• •				
Statistics using KM estimates on Logged Data an	nd Assumin	g Lognormal Distribution		
KM Mean of Logged Data	(1.312 95% KM UTL (Lognormal)95% Coverage		468
KM SD of Logged Data		1.596 95% KM UPL (Lognormal)		84.77
95% KM Percentile Lognormal (z)		51.26 95% KM USL (Lognormal)		107.6
- · · ·		· - ,		

Background	DL/2 Statist	ics Assuming	Lognormal	Distribution

Mean in Original Scale	12.11 Mean in Log Scale	1.286
SD in Original Scale	21.54 SD in Log Scale	1.767
95% UTL95% Coverage	766.3 95% UPL (t)	115.5
90% Percentile (z)	34.84 95% Percentile (z)	66.19
99% Percentile (z)	220.7 95% USL	150.4

 $\ensuremath{\mathsf{DL/2}}$ is not a Recommended Method. $\ensuremath{\mathsf{DL/2}}$ provided for comparisons and historical reasons.

Nonparametric Distribution Free Background Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)

Order of Statistic, r	9 95% UTL with95% Coverage	67.72
Approx, f used to compute achieved CC	0.474 Approximate Actual Confidence Coefficient achieved by U	0.37
Approximate Sample Size needed to achieve specified CC	59 95% UPL	67.72
95% USL	67.72 95% KM Chebyshev UPL	105.4

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Mercury, Total (1631) (ng/L)

C I	CLATINI
General	Statistics

Total Number of Observations	9 Number of Missing Observations	0
Number of Distinct Observations	9	
Number of Detects	8 Number of Non-Detects	1
Number of Distinct Detects	8 Number of Distinct Non-Detects	1
Minimum Detect	17.83 Minimum Non-Detect	13.15
Maximum Detect	1130 Maximum Non-Detect	13.15
Variance Detected	154309 Percent Non-Detects	11.11%
Mean Detected	315.5 SD Detected	392.8
Mean of Detected Logged Data	5.045 SD of Detected Logged Data	1.331

Critical Values for Background Threshold Values (BTVs)

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0.758 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.818 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.317 Lilliefors GOF Test

5% Lilliefors Critical Value 0.283 Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Kaplan Meier (KM) Background Statistics Assuming Normal Distribution

KM Mean	281.9 KM SD	359.2
95% UTL95% Coverage	1371 95% KM UPL (t)	986
90% KM Percentile (z)	742.2 95% KM Percentile (z)	872.7
99% KM Percentile (z)	1118 95% KM USL	1040

DL/2 Substitution Background Statistics Assuming Normal Distribution

,	U		
Mean		281.1 SD	381.6
95% UTL95% Coverage		1438 95% UPL (t)	1029
90% Percentile (z)		770.2 95% Percentile (z)	908.8
99% Percentile (z)		1169 95% USL	1086

DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons

C	COL	T4	D-++	Observation	- 0 - 1

A-D Test Statistic 0.441 Anderson-Darling GOF Test

5% A-D Critical Value 0.742 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.272 Kolmogorov-Smirnov GOF

5% K-S Critical Value 0.303 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.833 k star (bias corrected MLE)	0.604
Theta hat (MLE)	378.7 Theta star (bias corrected MLE)	522.3
nu hat (MLE)	13.33 nu star (bias corrected)	9.664
MLE Mean (bias corrected)	315.5	
MLE Sd (bias corrected)	405.9 95% Percentile of Chisquare (2kstar)	4.336

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01 Mean	280.4
Maximum	1130 Median	103.3
SD	382.2 CV	1.363
k hat (MLE)	0.396 k star (bias corrected ML	E) 0.338
Theta hat (MLE)	707.7 Theta star (bias corrected	d MLE) 829
nu hat (MLE)	7.132 nu star (bias corrected)	6.088
MLE Mean (bias corrected)	280.4 MLE Sd (bias corrected)	482.2
95% Percentile of Chisquare (2kstar)	2.975 90% Percentile	813.9
95% Percentile	1233 99% Percentile	2308

The following statistics are computed using Gamma ROS Statistics on Imputed Data

Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods

	WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	3098	4602 95% Approx. Gamma UPL	1433	1788
95% Gamma USL	1616	2069		

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	281.9 SD (KM)	359.2
Variance (KM)	129044 SE of Mean (KM)	128
k hat (KM)	0.616 k star (KM)	0.485
nu hat (KM)	11.08 nu star (KM)	8.722
theta hat (KM)	457.8 theta star (KM)	581.7
80% gamma percentile (KM)	462.2 90% gamma percentile (KM)	767.6
95% gamma percentile (KM)	1095 99% gamma percentile (KM)	1903

The following statistics are computed using gamma distribution and KM estimates

Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods

	WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	2304	2744 95% Approx. Gamma UPL	1149	1227
95% KM Gamma Percentile	903.6	935.5 95% Gamma USL	1279	1387

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic 0.95 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.818 Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.204 Lilliefors GOF Test

5% Lilliefors Critical Value 0.283 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Background Lognormal ROS Statistics Assuming Lognormal I	Distribution Using Imputed Non-Detects	
Mean in Original Scale	281.1 Mean in Log Scale	4.683
SD in Original Scale	381.7 SD in Log Scale	1.653
95% UTL95% Coverage	16189 95% BCA UTL95% Coverage	1130
95% Bootstrap (%) UTL95% Coverage	1130 95% UPL (t)	2759
90% Percentile (z)	898.8 95% Percentile (z)	1638
99% Percentile (z)	5052 95% USL	3531
Statistics using KM estimates on Logged Data and Assuming	Lognormal Distribution	
KM Mean of Logged Data	4.771 95% KM UTL (Lognormal)95% Coverage	8407
KM SD of Logged Data	1.407 95% KM UPL (Lognormal)	1863
95% KM Percentile Lognormal (z)	1195 95% KM USL (Lognormal)	2299
Background DL/2 Statistics Assuming Lognormal Distribution	n	
Mean in Original Scale	281.1 Mean in Log Scale	4.694
SD in Original Scale	381.6 SD in Log Scale	1.632
95% UTL95% Coverage	15357 95% UPL (t)	2676
90% Percentile (z)	884.4 95% Percentile (z)	1600
99% Percentile (z)	4864 95% USL	3415
DL/2 is not a Recommended Method. DL/2 provided for con	nparisons and historical reasons.	
Nonparametric Distribution Free Background Statistics		
Data appear to follow a Discernible Distribution at 5% Signif	ficance Level	
Nonparametric Upper Limits for BTVs(no distinction made b	petween detects and nondetects)	
Order of Statistic, r	9 95% UTL with95% Coverage	1130
Approx, f used to compute achieved CC	0.474 Approximate Actual Confidence Coefficient achieved by U	0.37
Approximate Sample Size needed to achieve specified CC	59 95% UPL	1130
95% USL	1130 95% KM Chebyshev UPL	1932

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Mercury, Total (7470) (μg/L)

General Statistics			
Total Number of Observations	9	Number of Missing Observations	0
Number of Distinct Observations	7		
Number of Detects	6	Number of Non-Detects	3
Number of Distinct Detects	6	Number of Distinct Non-Detects	1
Minimum Detect	0.069	Minimum Non-Detect	0.15
Maximum Detect	0.57	Maximum Non-Detect	0.15
Variance Detected	0.0376	Percent Non-Detects	33.33%
Mean Detected	0.203	SD Detected	0.194
Mean of Detected Logged Data	-1.91	SD of Detected Logged Data	0.824
Critical Values for Background Threshold Values (BTVs)			
Tolerance Factor K (For UTL)	3.031	d2max (for USL)	2.11
Normal GOF Test on Detects Only			
Shapiro Wilk Test Statistic	0.765	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.788	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.293	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.325	Detected Data appear Normal at 5% Significance Level	

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan Meier (KM) Background Statistics Assumi	ng Normal I	Distribution		
KM Mean	ing ivormari	0.167 KM SD		0.154
95% UTL95% Coverage		0.634 95% KM UPL (t)		0.469
90% KM Percentile (z)		0.364 95% KM Percentile (z)		0.42
99% KM Percentile (z)		0.525 95% KM USL		0.492
`,				
DL/2 Substitution Background Statistics Assumin	g Normal D	istribution		
Mean		0.16 SD		0.166
95% UTL95% Coverage		0.663 95% UPL (t)		0.485
90% Percentile (z)		0.373 95% Percentile (z)		0.433
99% Percentile (z)		0.546 95% USL		0.51
DL/2 is not a recommended method. DL/2 provided in the provide	ded for com	parisons and historical reasons		
Commo COF Toots on Detected Observations On	l.			
Gamma GOF Tests on Detected Observations On A-D Test Statistic	ıy	0.462 Anderson Darling COE Tost		
5% A-D Critical Value		0.462 Anderson-Darling GOF Test 0.706 Detected data appear Gamma Distributed a	at E% Significan	co Lovol
K-S Test Statistic		0.244 Kolmogorov-Smirnov GOF	at 3/0 Significant	Le Levei
5% K-S Critical Value		0.337 Detected data appear Gamma Distributed a	at 5% Significan	امیرم ا
Detected data appear Gamma Distributed at 5%	Significance	• •	at 3/0 Significant	ce Level
	. 0			
Gamma Statistics on Detected Data Only				
k hat (MLE)		1.744 k star (bias corrected MLE)		0.983
Theta hat (MLE)		0.116 Theta star (bias corrected MLE)		0.206
nu hat (MLE)		20.92 nu star (bias corrected)		11.79
MLE Mean (bias corrected)		0.203		
MLE Sd (bias corrected)		0.204 95% Percentile of Chisquare (2kstar)		5.925
Gamma ROS Statistics using Imputed Non-Detect	ts			
For such situations, GROS method may yield inco	NDs with m mall such a orrect value	s $<$ 1.0, especially when the sample size is small (e.g.,	<15-20)	
GROS may not be used when kstar of detects is s For such situations, GROS method may yield inco This is especially true when the sample size is sm	NDs with mall such a prect value nall.	s $<$ 1.0, especially when the sample size is small (e.g., s of UCLs and BTVs		
GROS may not be used when kstar of detects is s For such situations, GROS method may yield inco This is especially true when the sample size is sm For gamma distributed detected data, BTVs and	NDs with mall such a prect value nall.	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimates.		0.166
GROS may not be used when kstar of detects is so For such situations, GROS method may yield incoming the sample size is somether than the sample size is somether gamma distributed detected data, BTVs and Minimum	NDs with mall such a prect value nall.	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimation 0.0225 Mean		0.166 0.0989
GROS may not be used when kstar of detects is so For such situations, GROS method may yield incomplete the sample size is somethod that is especially true when the sample size is somethod gamma distributed detected data, BTVs and Minimum Maximum	NDs with mall such a prect value nall.	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimat 0.0225 Mean 0.57 Median		0.0989
GROS may not be used when kstar of detects is so For such situations, GROS method may yield incoming the sample size is somether than the sample size is somether gamma distributed detected data, BTVs and Minimum	NDs with mall such a prect value nall.	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimate 0.0225 Mean 0.57 Median 0.167 CV		
GROS may not be used when kstar of detects is so For such situations, GROS method may yield incomplete the sample size is somethod that is especially true when the sample size is somethod gamma distributed detected data, BTVs and Minimum Maximum SD	NDs with mall such a prect value nall.	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimat 0.0225 Mean 0.57 Median		0.0989 1.002
GROS may not be used when kstar of detects is so For such situations, GROS method may yield incomplete the sample size is somethod may give the sample size is somethod may make the sample size is somethod may make the sample size is somethod may be somethod may be such as the sample size is somethod may be such as the sample size is somethod may be such as the sample size is somethod may be such as the sample size is somethod may be such as the sample size is somethod may size it sometho	NDs with mall such a prect value nall.	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimation 0.0225 Mean 0.57 Median 0.167 CV 1.511 k star (bias corrected MLE)		0.0989 1.002 1.081
GROS may not be used when kstar of detects is something for such situations, GROS method may yield incomplete the sample size is something for gamma distributed detected data, BTVs and Minimum Maximum SD k hat (MLE) Theta hat (MLE)	NDs with mall such a prect value nall.	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimation 0.0225 Mean 0.57 Median 0.167 CV 1.511 k star (bias corrected MLE) 0.11 Theta star (bias corrected MLE)		0.0989 1.002 1.081 0.154
GROS may not be used when kstar of detects is a For such situations, GROS method may yield incomplete the sample size is somethod may give the sample size is somethod may make the sample size is somethod may make the sample size is somethod may be size in somethod may size in	NDs with mall such a prect value nall.	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimat 0.0225 Mean 0.57 Median 0.167 CV 1.511 k star (bias corrected MLE) 0.11 Theta star (bias corrected MLE) 27.19 nu star (bias corrected)		0.0989 1.002 1.081 0.154 19.46
GROS may not be used when kstar of detects is a For such situations, GROS method may yield incomplete the sample size is somethod may give the sample size is somethod may make the sample size is somethod may make the sample size is somethod may be size in somethod may size in	NDs with mall such a prect value nall.	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimat 0.0225 Mean 0.57 Median 0.167 CV 1.511 k star (bias corrected MLE) 0.11 Theta star (bias corrected MLE) 27.19 nu star (bias corrected) 0.166 MLE Sd (bias corrected)		0.0989 1.002 1.081 0.154 19.46 0.16
GROS may not be used when kstar of detects is a For such situations, GROS method may yield incomplete the sample size is somethod may give in the sample size is somethod may give in the sample size is somethod may make it is a six of gamma distributed detected data, BTVs and Minimum Maximum SD k hat (MLE) Theta hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) 95% Percentile of Chisquare (2kstar)	NDs with m mall such a prrect value nall. UCLs may b	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimation 0.0225 Mean 0.57 Median 0.167 CV 1.511 k star (bias corrected MLE) 0.11 Theta star (bias corrected MLE) 27.19 nu star (bias corrected) 0.166 MLE Sd (bias corrected) 6.302 90% Percentile 0.485 99% Percentile		0.0989 1.002 1.081 0.154 19.46 0.16 0.376
GROS may not be used when kstar of detects is a For such situations, GROS method may yield incomplete the sample size is somethod may give the sample size is somethod may give the sample size is somethod may make the sample size is somethod may make the sample size is somethod may make the sample size is somethod may size in sample size is somethod may give the sample size is somethod may sample size is somethod may give the sample size is somethod may sample sit sample size is somethod may sample size is somethod may sample	NDs with m mall such a prrect value nall. UCLs may b	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimation 0.0225 Mean 0.57 Median 0.167 CV 1.511 k star (bias corrected MLE) 0.11 Theta star (bias corrected MLE) 27.19 nu star (bias corrected) 0.166 MLE Sd (bias corrected) 6.302 90% Percentile 0.485 99% Percentile		0.0989 1.002 1.081 0.154 19.46 0.16 0.376
GROS may not be used when kstar of detects is a For such situations, GROS method may yield incomplete the sample size is somethod may give the sample size is somethod may make the sample size is somethod make the sample size is somethod may make the sample size is somethod may size in sample size is somethod may size in sample size is somethod may size in the size is somethod may size in the size is somethod may size is somethod may size in the size is somethod may size it size it size is somethod may size it size it size is somethod may size it size	NDs with m mall such a prrect value nall. UCLs may b	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimation 0.0225 Mean 0.57 Median 0.167 CV 1.511 k star (bias corrected MLE) 0.11 Theta star (bias corrected MLE) 27.19 nu star (bias corrected) 0.166 MLE Sd (bias corrected) 6.302 90% Percentile 0.485 99% Percentile		0.0989 1.002 1.081 0.154 19.46 0.16 0.376
GROS may not be used when kstar of detects is a For such situations, GROS method may yield incomplete the sample size is somethod may give the sample size is somethod may make the sample size is somethod make the sample size is somethod may make the sample size is somethod may size in sample size is somethod may size in sample size is somethod may size in the size is somethod may size in the size is somethod may size is somethod may size in the size is somethod may size it size it size is somethod may size it size it size is somethod may size it size	NDs with m mall such a prect value hall. UCLs may b ma ROS Sta vkins Wixley	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimat 0.0225 Mean 0.57 Median 0.167 CV 1.511 k star (bias corrected MLE) 0.11 Theta star (bias corrected MLE) 27.19 nu star (bias corrected) 0.166 MLE Sd (bias corrected) 6.302 90% Percentile 0.485 99% Percentile tistics on Imputed Data (HW) Methods	tes	0.0989 1.002 1.081 0.154 19.46 0.16 0.376 0.737
GROS may not be used when kstar of detects is a For such situations, GROS method may yield incomplete the sample size is small for gamma distributed detected data, BTVs and Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) 95% Percentile of Chisquare (2kstar) 95% Percentile The following statistics are computed using Gamulpper Limits using Wilson Hilferty (WH) and Haven the such situation of the same properties.	NDs with mimall such a prect value hall. UCLs may be ma ROS Stavkins Wixley	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimat 0.0225 Mean 0.57 Median 0.167 CV 1.511 k star (bias corrected MLE) 0.11 Theta star (bias corrected MLE) 27.19 nu star (bias corrected) 0.166 MLE Sd (bias corrected) 6.302 90% Percentile 0.485 99% Percentile tistics on Imputed Data (HW) Methods	tes	0.0989 1.002 1.081 0.154 19.46 0.16 0.376 0.737
GROS may not be used when kstar of detects is a For such situations, GROS method may yield incomplete the sample size is somethod may give the sample size is somethod may give the sample size is somethod may make the sample size is somethod may make the sample size is somethod may make the size is somethod make the size is somet	MDs with mimall such a princet value hall. UCLs may burder with the burder wit	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimation 0.0225 Mean	tes	0.0989 1.002 1.081 0.154 19.46 0.16 0.376 0.737
GROS may not be used when kstar of detects is a For such situations, GROS method may yield incomplete the sample size is some for gamma distributed detected data, BTVs and Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) mu hat (MLE) MLE Mean (bias corrected) 95% Percentile of Chisquare (2kstar) 95% Percentile The following statistics are computed using Game Upper Limits using Wilson Hilferty (WH) and Have 95% Approx. Gamma UTL with 95% Coverage 95% Gamma USL	MDs with mimall such a princet value hall. UCLs may burder with the burder wit	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimation 0.0225 Mean	tes	0.0989 1.002 1.081 0.154 19.46 0.16 0.376 0.737
GROS may not be used when kstar of detects is a For such situations, GROS method may yield incomplete the sample size is some for gamma distributed detected data, BTVs and Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) mu hat (MLE) MLE Mean (bias corrected) 95% Percentile of Chisquare (2kstar) 95% Percentile The following statistics are computed using Game Upper Limits using Wilson Hilferty (WH) and Have 95% Approx. Gamma UTL with 95% Coverage 95% Gamma USL Estimates of Gamma Parameters using KM Estim Mean (KM)	MDs with mimall such a princet value hall. UCLs may burder with the burder wit	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimation 0.0225 Mean	tes	0.0989 1.002 1.081 0.154 19.46 0.16 0.376 0.737 HW 0.562
GROS may not be used when kstar of detects is a For such situations, GROS method may yield incomplete the sample size is some for gamma distributed detected data, BTVs and Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) MLE Mean (bias corrected) 95% Percentile of Chisquare (2kstar) 95% Percentile The following statistics are computed using Game Upper Limits using Wilson Hilferty (WH) and Have 95% Approx. Gamma UTL with 95% Coverage 95% Gamma USL Estimates of Gamma Parameters using KM Estim Mean (KM) Variance (KM)	MDs with mimall such a princet value hall. UCLs may burder with the burder wit	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimation 0.0225 Mean	tes	0.0989 1.002 1.081 0.154 19.46 0.16 0.376 0.737 HW 0.562
GROS may not be used when kstar of detects is a For such situations, GROS method may yield incomplete the sample size is small for gamma distributed detected data, BTVs and Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) MLE Mean (bias corrected) 95% Percentile of Chisquare (2kstar) 95% Percentile The following statistics are computed using Gamulpper Limits using Wilson Hilferty (WH) and Have 95% Approx. Gamma UTL with 95% Coverage 95% Gamma USL Estimates of Gamma Parameters using KM Estim Mean (KM) Variance (KM) k hat (KM)	MDs with mimall such a princet value hall. UCLs may burder with the burder wit	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimation 0.0225 Mean	tes	0.0989 1.002 1.081 0.154 19.46 0.16 0.376 0.737 HW 0.562
GROS may not be used when kstar of detects is a For such situations, GROS method may yield incomplete the sample size is small for gamma distributed detected data, BTVs and Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) mu hat (MLE) MLE Mean (bias corrected) 95% Percentile of Chisquare (2kstar) 95% Percentile The following statistics are computed using Gamu Upper Limits using Wilson Hilferty (WH) and Have 95% Approx. Gamma UTL with 95% Coverage 95% Gamma USL Estimates of Gamma Parameters using KM Estim Mean (KM) Variance (KM) k hat (KM) nu hat (KM)	MDs with mimall such a princet value hall. UCLs may burder with the burder wit	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimation 0.0225 Mean 0.57 Median 0.167 CV 1.511 k star (bias corrected MLE) 0.11 Theta star (bias corrected MLE) 27.19 nu star (bias corrected) 0.166 MLE Sd (bias corrected) 6.302 90% Percentile 0.485 99% Percentile tistics on Imputed Data (HW) Methods HW 1.054 95% Approx. Gamma UPL 0.617 0.167 SD (KM) 0.0237 SE of Mean (KM) 1.173 k star (KM) 21.12 nu star (KM)	tes	0.0989 1.002 1.081 0.154 19.46 0.16 0.376 0.737 HW 0.562
GROS may not be used when kstar of detects is a For such situations, GROS method may yield incomplete the sample size is small for gamma distributed detected data, BTVs and Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) mu hat (MLE) MLE Mean (bias corrected) 95% Percentile of Chisquare (2kstar) 95% Percentile The following statistics are computed using Gamung Upper Limits using Wilson Hilferty (WH) and Have 95% Approx. Gamma UTL with 95% Coverage 95% Gamma USL Estimates of Gamma Parameters using KM Estim Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM)	MDs with mimall such a princet value hall. UCLs may burder with the burder wit	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimation 0.0225 Mean	tes	0.0989 1.002 1.081 0.154 19.46 0.16 0.376 0.737 HW 0.562
GROS may not be used when kstar of detects is a For such situations, GROS method may yield incomplete the sample size is small for gamma distributed detected data, BTVs and Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) mu hat (MLE) MLE Mean (bias corrected) 95% Percentile of Chisquare (2kstar) 95% Percentile The following statistics are computed using Gamu Upper Limits using Wilson Hilferty (WH) and Have 95% Approx. Gamma UTL with 95% Coverage 95% Gamma USL Estimates of Gamma Parameters using KM Estim Mean (KM) Variance (KM) k hat (KM) nu hat (KM)	MDs with mimall such a princet value hall. UCLs may burder with the burder wit	s <1.0, especially when the sample size is small (e.g., s of UCLs and BTVs e computed using gamma distribution on KM estimation 0.0225 Mean 0.57 Median 0.167 CV 1.511 k star (bias corrected MLE) 0.11 Theta star (bias corrected MLE) 27.19 nu star (bias corrected) 0.166 MLE Sd (bias corrected) 6.302 90% Percentile 0.485 99% Percentile tistics on Imputed Data (HW) Methods HW 1.054 95% Approx. Gamma UPL 0.617 0.167 SD (KM) 0.0237 SE of Mean (KM) 1.173 k star (KM) 21.12 nu star (KM)	tes	0.0989 1.002 1.081 0.154 19.46 0.16 0.376 0.737 HW 0.562

The following statistics are computed using gamma distribution and KM estimates Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods

\	NΗ	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	0.762	0.797	95% Approx. Gamma UPL 0.463	0.463
95% KM Gamma Percentile	0.391	0.388	95% Gamma USL 0.498	0.502
Lognormal GOF Test on Detected Observations On	nly			
Shapiro Wilk Test Statistic		0.9	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value		0.788	Detected Data appear Lognormal at 5% Significance Leve	el
Lilliefors Test Statistic		0.193	Lilliefors GOF Test	
5% Lilliefors Critical Value		0.325	Detected Data appear Lognormal at 5% Significance Leve	el
Detected Data appear Lognormal at 5% Significano	ce Level			
Background Lognormal ROS Statistics Assuming Lo	gnormal	Distributi	on Using Imputed Non-Detects	
Mean in Original Scale		0.169	Mean in Log Scale	-2.057
SD in Original Scale		0.163	SD in Log Scale	0.725
95% UTL95% Coverage		1.151	95% BCA UTL95% Coverage	0.57
95% Bootstrap (%) UTL95% Coverage		0.57	95% UPL (t)	0.53
90% Percentile (z)		0.324	95% Percentile (z)	0.421
99% Percentile (z)		0.691	95% USL	0.59
Statistics using KM estimates on Logged Data and	Assumin	g Lognorm	nal Distribution	
KM Mean of Logged Data		-2.071	95% KM UTL (Lognormal)95% Coverage	0.975
KM SD of Logged Data		0.675	95% KM UPL (Lognormal)	0.473
95% KM Percentile Lognormal (z)		0.383	95% KM USL (Lognormal)	0.524
Background DL/2 Statistics Assuming Lognormal D	istributio	n		
Mean in Original Scale		0.16	Mean in Log Scale	-2.137
SD in Original Scale		0.166	SD in Log Scale	0.735
95% UTL95% Coverage		1.095	95% UPL (t)	0.498
90% Percentile (z)		0.303	95% Percentile (z)	0.395
99% Percentile (z)		0.652	95% USL	0.556
DL/2 is not a Recommended Method. DL/2 provide	ed for co	mparisons	and historical reasons.	
Nonparametric Distribution Free Background Stati	stics			
Data appear to follow a Discernible Distribution at		ificance Le	evel	
Nonparametric Upper Limits for BTVs(no distinction	n made	between o	detects and nondetects)	
Order of Statistic, r			95% UTL with95% Coverage	0.57
Approx, f used to compute achieved CC		0.474	Approximate Actual Confidence Coefficient achieved by	J 0.37
Approximate Sample Size needed to achieve speci	fied CC		95% UPL	0.57
95% USL		0.57	95% KM Chebyshev UPL	0.874

\ \ / / | |

1111/

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

ProUCL Output - Trimmed Dataset

95% WH Approx. Gamma UTL with 95% Coverage

95% HW Approx. Gamma UTL with 95% Coverage

95% WH USL

·					
	Background Statistics fo	r Data Sets with Non-Detects			
User Selected Options					
Date/Time of Computation	ProUCL 5.16/2/2018 5:30:54 PM				
From File	BTVs for GW from Mine	BTVs for GW from Minerlized Areas near RDM 06022018_a.xls			
Full Precision	OFF				
Confidence Coefficient	95%				
Coverage	95%				
Different or Future K Observation	ons 1				
Number of Bootstrap Operation	s 2000				
Antimony Total					
Antimony, Total (μg/L)					
(μg/ L)					
General Statistics					
Total Number of Observations		8 Number of Distinct Observations	8		
		Number of Missing Observations	1		
Minimum		0.13 First Quartile	0.416		
Second Largest		7.45 Median	4.303		
Maximum		8.9 Third Quartile	7.338		
Mean		4.13 SD	3.864		
Coefficient of Variation		0.936 Skewness	0.0343		
Mean of logged Data		0.491 SD of logged Data	1.815		
Critical Values for Dealerman T	harabald Values (DTVs)				
Critical Values for Background T	nresnoid values (BTVS)	2.197 d2may/for LISI)	2.032		
Tolerance Factor K (For UTL)		3.187 d2max (for USL)	2.032		
Normal GOF Test					
Shapiro Wilk Test Statistic		0.795 Shapiro Wilk GOF Test			
5% Shapiro Wilk Critical Value		0.818 Data Not Normal at 5% Significance Level			
Lilliefors Test Statistic		0.279 Lilliefors GOF Test			
5% Lilliefors Critical Value		0.283 Data appear Normal at 5% Significance Level			
Data appear Approximate Norr	nal at 5% Significance Lev	el			
Background Statistics Assuming	Normal Distribution				
95% UTL with 95% Coverage		16.44 90% Percentile (z)	9.082		
95% UPL (t)		11.89 95% Percentile (z)	10.49		
95% USL		11.98 99% Percentile (z)	13.12		
Gamma GOF Test					
A-D Test Statistic		0.729 Anderson-Darling Gamma GOF Test			
5% A-D Critical Value		0.751 Detected data appear Gamma Distributed at 5%	Significance Level		
K-S Test Statistic		0.311 Kolmogorov-Smirnov Gamma GOF Test	o organicance bever		
5% K-S Critical Value		0.306 Data Not Gamma Distributed at 5% Significance	Level		
Detected data follow Appr. Gam	ıma Distribution at 5% Sig	_			
Gamma Statistics					
k hat (MLE)		0.658 k star (bias corrected MLE)	0.494		
Theta hat (MLE)		6.279 Theta star (bias corrected MLE)	8.354		
nu hat (MLE)		10.52 nu star (bias corrected)	7.911		
MLE Mean (bias corrected)		4.13 MLE Sd (bias corrected)	5.874		
Packground Statistics Assuming	Gamma Distribution				
Background Statistics Assuming 95% Wilson Hilferty (WH) App		20.48 90% Percentile	11.2		
95% Hawkins Wixley (HW) App		24.1 95% Percentile	15.93		
95% nawkiiis wixiey (nw) App		44.19 93% Percentile	15.95		

44.49 99% Percentile

20.83 95% HW USL

60.94

27.57

24.58

Lognormal G	GOF Test	
-------------	----------	--

Shapiro Wilk Test Statistic 0.819 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.818 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.291 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.283 Data Not Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Background Statistics assuming Lognormal Distribution

95% UTL with 95% Coverage	532.3 90% Percentile (z)	16.74
95% UPL (t)	62.77 95% Percentile (z)	32.38
95% USL	65.35 99% Percentile (z)	111.6

Nonparametric Distribution Free Background Statistics

Data appear Approximate Normal at 5% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, r	8 95% UTL with 95% Coverage	8.9
•	S	0.337
Approx, f used to compute achieved CC	0.421 Approximate Actual Confidence Coefficient achieved by U	
	Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	8.9 95% BCA Bootstrap UTL with 95% Coverage	8.9
95% UPL	8.9 90% Percentile	7.885
90% Chebyshev UPL	16.43 95% Percentile	8.392
95% Chebyshev UPL	21.99 99% Percentile	8.798
95% USL	8.9	

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Mercury, Dissolved (ng/L)

General Statistics

Total Number of Observations	8 Number of Missing Observations	1
Number of Distinct Observations	8	
Number of Detects	6 Number of Non-Detects	2
Number of Distinct Detects	6 Number of Distinct Non-Detects	2
Minimum Detect	0.667 Minimum Non-Detect	0.35
Maximum Detect	14.8 Maximum Non-Detect	3.715
Variance Detected	36.83 Percent Non-Detects	25%
Mean Detected	6.541 SD Detected	6.069
Mean of Detected Logged Data	1.414 SD of Detected Logged Data	1.155

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL) 3.187 d2max (for USL) 2.032

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0.821 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.788 Detected Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.3 Lilliefors GOF Test

5% Lilliefors Critical Value 0.325 Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan Meier (KM) Background Statistics Assuming Normal Distribution

KM Mean	5.159 KM SD	5.388
95% UTL95% Coverage	22.33 95% KM UPL (t)	15.99
90% KM Percentile (z)	12.06 95% KM Percentile (z)	14.02
99% KM Percentile (z)	17.69 95% KM USL	16.11

DL/2 Substitution Background Statistics Assumin	g Normal D	istribution		
Mean		5.159 SD		5.749
95% UTL95% Coverage		23.48 95% UPL (t)		16.71
90% Percentile (z)		12.53 95% Percentile (z)		14.62
99% Percentile (z)		18.53 95% USL		16.84
DL/2 is not a recommended method. DL/2 provi	ded for con	nparisons and historical reasons		
Gamma GOF Tests on Detected Observations On	ılv			
A-D Test Statistic	,	0.349 Anderson-Darling GOF Test		
5% A-D Critical Value		0.712 Detected data appear Gamma Distribute	ed at 5% Significar	ice Level
K-S Test Statistic		0.219 Kolmogorov-Smirnov GOF	.a ac 5 / 5 5 .g 6 a .	.00 20 0.
5% K-S Critical Value		0.339 Detected data appear Gamma Distribute	ed at 5% Significar	ice Level
Detected data appear Gamma Distributed at 5%	Significanc		Ü	
Gamma Statistics on Detected Data Only				
Gamma Statistics on Detected Data Only k hat (MLE)		1.218 k star (bias corrected MLE)		0.72
Theta hat (MLE)		5.369 Theta star (bias corrected MLE)		9.081
nu hat (MLE)		14.62 nu star (bias corrected)		8.643
MLE Mean (bias corrected)		6.541		0.013
MLE Sd (bias corrected)		7.707 95% Percentile of Chisquare (2kstar)		4.853
Company Possibility of the Lord Laboratory Inc.				
Gamma ROS Statistics using Imputed Non-Detec		and the delegantion of multiple DI a		
GROS may not be used when data set has > 50%			a <1E 20\	
		is <1.0, especially when the sample size is small (e	.g., <15-20)	
For such situations, GROS method may yield income This is especially true when the sample size is sm		is of octs and bivs		
		e computed using gamma distribution on KM esti	mates	
Minimum	OCLS IIIay k	0.01 Mean	illates	5.017
Maximum		14.8 Median		2.851
SD		5.858 CV		1.168
k hat (MLE)		0.548 k star (bias corrected MLE)		0.426
Theta hat (MLE)		9.155 Theta star (bias corrected MLE)		11.78
nu hat (MLE)		8.769 nu star (bias corrected)		6.814
MLE Mean (bias corrected)		5.017 MLE Sd (bias corrected)		7.689
95% Percentile of Chisquare (2kstar)		3.463 90% Percentile		14.01
95% Percentile		20.4 99% Percentile		36.35
The following statistics are computed using Gam	ma ROS Sta	atistics on Imputed Data		
Upper Limits using Wilson Hilferty (WH) and Hav		•		
,, ,		HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	56.51	80.91 95% Approx. Gamma UPL	25.54	30.95
95% Gamma USL	25.98	31.58		
Estimates of Gamma Parameters using KM Estim	nates			
Mean (KM)		5.159 SD (KM)		5.388
Variance (KM)		29.03 SE of Mean (KM)		2.095
k hat (KM)		0.917 k star (KM)		0.656
nu hat (KM)		14.67 nu star (KM)		10.5
theta hat (KM)		5.627 theta star (KM)		7.861
80% gamma percentile (KM)		8.495 90% gamma percentile (KM)		13.15
95% gamma percentile (KM)		17.97 99% gamma percentile (KM)		29.56
The following statistics are computed using gam	ma distribu	tion and KM estimates		
Upper Limits using Wilson Hilferty (WH) and Hav				
	WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	41.41	50.16 95% Approx. Gamma UPL	20.48	22.21
95% KM Gamma Percentile	15.85	16.62 95% Gamma USL	20.79	22.59

Lognormal GOF Test on Detected Observations Only		
Shapiro Wilk Test Statistic	0.928 Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.788 Detected Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.183 Lilliefors GOF Test	
5% Lilliefors Critical Value	0.325 Detected Data appear Lognormal at 5% Significance Level	
Detected Data appear Lognormal at 5% Significance Leve	el	
Background Lognormal ROS Statistics Assuming Lognorn	nal Distribution Using Imputed Non-Detects	
Mean in Original Scale	5.097 Mean in Log Scale	0.938
SD in Original Scale	5.789 SD in Log Scale	1.367
95% UTL95% Coverage	199.3 95% BCA UTL95% Coverage	14.8
95% Bootstrap (%) UTL95% Coverage	14.8 95% UPL (t)	39.86
90% Percentile (z)	14.73 95% Percentile (z)	24.21
99% Percentile (z)	61.46 95% USL	41.08
Statistics using KM estimates on Logged Data and Assum	ning Lognormal Distribution	
KM Mean of Logged Data	0.949 95% KM UTL (Lognormal)95% Coverage	160.6
KM SD of Logged Data	1.296 95% KM UPL (Lognormal)	34.93
95% KM Percentile Lognormal (z)	21.78 95% KM USL (Lognormal)	35.94
Background DL/2 Statistics Assuming Lognormal Distribu	ution	
Mean in Original Scale	5.159 Mean in Log Scale	0.92
SD in Original Scale	5.749 SD in Log Scale	1.479
95% UTL95% Coverage	280.1 95% UPL (t)	49.07
90% Percentile (z)	16.72 95% Percentile (z)	28.61
99% Percentile (z)	78.41 95% USL	50.71
DL/2 is not a Recommended Method. DL/2 provided for	comparisons and historical reasons.	
Nonparametric Distribution Free Background Statistics		
Data appear to follow a Discernible Distribution at 5% Si	gnificance Level	
Nonparametric Upper Limits for BTVs(no distinction ma	de between detects and nondetects)	
Order of Statistic, r	8 95% UTL with95% Coverage	14.8
Approx, f used to compute achieved CC	0.421 Approximate Actual Confidence Coefficient achieved by U	0.337

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

59 95% UPL

14.8 95% KM Chebyshev UPL

14.8

30.07

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Approximate Sample Size needed to achieve specified CC

95% USL